
www.manaraa.com

Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2008 Proceedings European Conference on Information Systems
(ECIS)

2008

Customer-Supplier Issues in Software
Development
Satya Pasi
Lappeenranta University of Technology, satya.pasi@lut.fi

Kari Smolander
Lappeenranta University of Technology, kari.smolander@lut.fi

Uolevi Nikula
Lappeenranta University of Technology, uolevi.nikula@lut.fi

Follow this and additional works at: http://aisel.aisnet.org/ecis2008

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2008 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Pasi, Satya; Smolander, Kari; and Nikula, Uolevi, "Customer-Supplier Issues in Software Development" (2008). ECIS 2008
Proceedings. 212.
http://aisel.aisnet.org/ecis2008/212

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301350683?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2008/212?utm_source=aisel.aisnet.org%2Fecis2008%2F212&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

www.manaraa.com

CUSTOMER-SUPPLIER ISSUES IN SOFTWARE
DEVELOPMENT

Satya Jaya Aparna Pasi, Lappeenranta University of Technology, Department of Information
Technology, P.O.Box 20, 53851 Lappeenranta, Finland, satya.pasi@lut.fi

Kari Smolander, Lappeenranta University of Technology, Department of Information
Technology, P.O.Box 20, 53851 Lappeenranta, Finland, kari.smolander@lut.fi

Uolevi Nikula, Lappeenranta University of Technology, Department of Information
Technology, P.O.Box 20, 53851 Lappeenranta, Finland, uolevi.nikula@lut.fi

Abstract

Many studies list the customer-supplier -relationship related issues among the most important reasons
for software project failures. Today most of the software development is done outside the organization
actually using the software, so the organizational interface of customer and supplier is something that
we just need to live with. Since it is not possible, or desirable, to eliminate this interface, we need
proper ways to manage the issues introduced by this organizational interface. In this paper we shall
look at the customer-supplier interface and issues related to it. The purpose of the paper is to
demonstrate common issues and how they can manifest themselves in the software development
context. Our study identified six issues related to customer-supplier interface. The issues were related
to knowledge transfer, changes during projects, and power relations between customers and suppliers.
The paper has implications both for the practice and research. For practitioners the identification and
exploration of the issues will provide a solid basis to manage these problems as they come up in
practice. For researchers the paper provides an empirically founded description of issues identified in
customer-supplier interface.

Keywords: Information systems development, Software development, Customer-Supplier relationship

HYPERLINK
HYPERLINK
HYPERLINK
mailto:satya.pasi@lut.fi
mailto:kari.smolander@lut.fi
mailto:uolevi.nikula@lut.fi

www.manaraa.com

1 INTRODUCTION

Software development projects today have often an additional task of combining the forces of separate
organizations, the customer and supplier organizations. In many cases a working customer and
supplier relationship is crucial for a software project success. Since the customer and the supplier are
usually separate organizations the issues of the interface between these organizations are often
complicated. This scenario can be even more complex in software outsourcing organizations. A
number of studies have focused on the success of software projects, and reported that incomplete
application domain knowledge, changing requirements, and communication issues are common
problems in this area (Alexander et al., 1988; Boehm, 2002; Hanssen et al., 2006; Manhart et al.,
2004).

Customer issues are factors that, when present, can adversely affect a project unless project managers
take appropriate countermeasures (Wallace and Keil, 2004). The customer has been seen as one of the
main software project challenge in some studies (Keil et al., 1998); Wallace and Keil, 2004), and more
generally stakeholder related issues have been identified as the main reason for software project
failures in more than 8000 projects (Johnson, 1999). Boehm (2002a) has gone so far that he claims
that the communication between the customer and the development team is the base for five out of six
reasons for software project failure. According to Johnson (1999) the main reason for the cost
overruns is problems in customer relationship, and Jorgensen and Molokken-Ostvold (2006) claim in
their work that the average cost overruns lie close to 34 % of total development costs. Keil et al (1998)
note that even though requirements misunderstanding and change management are critical issues in
software project, they can be controlled by the project manager. Customer related issues, however,
cannot be controlled by a project manager since they are related to the customer’s behaviour (Keil et
al., 1998). Therefore, it is of utmost importance for the project manager to forecast the issues that arise
from the customer to achieve success in project implementation.

Our previous study explored the context of software development process and as a result provided a
list of contextual factors that affected the process (Bern et al., 2007). Out of the 9 factors we realized
that the customer is an important factor as it was seen similarly by all the interviews in the collected
data. Hence we decided to study the customer on a more detailed level in this study. Although
researchers have identified the customer relationship as one of the software management challenges,
studies that explicitly investigate customer-supplier related issues are rare. In this study, we analyze
customer-supplier issues in the development of tailored systems to help fill this gap. From the set of
empirical data collected and analyzed using grounded theory approach, our study reveals a list of
customer-related issues in software development. The interview-based empirical data was collected
from three software development organizations, where the interviewees ranged from senior and
project managers to system architects, analysts, and developers.

The structure of the paper is as follows. Section 2 describes the used research method and studied
organizations. Section 3 presents the customer-related issues in software development identified in this
study, interleaved with discussion and findings from the literature. Section 4 finally concludes the
paper.

2 RESEARCH PROCESS AND METHODOLOGY

The fact that the customer-supplier issues have not received much attention in the software
development research before makes the topic well suited for qualitative research approaches. Yin
(2003) claims that qualitative research approaches are best suited to areas that lack previous theories,
and Benbasat et al. (1987) have found them suitable for in-depth study in a given organizational
setting. The grounded theory approach (Glaser and Strauss, 1967; Strauss and Corbin, 1990) is a
general qualitative research methodology for the data collection and analysis that uses a systematically

www.manaraa.com

applied set of methods to generate an inductive theory about a substantive data. Seaman (1999) reports
that the theory-forming grounded approach suits well for the identification of new theories and
concepts. Grounded theory has been found to fit the study of software and information systems
(Hansen and Kautz, 2005; Kirsch and Haney, 2006; Seaman, 1999).

The data was collected using theme-based interviews during the beginning of October 2006 and
January 2007. The interviews covered four themes: background information; systems development
projects methods and practices; effects of the company and its business environment on systems
development practices; and networking and cooperation. The interviews were done with upper
managers, project managers, and developers (Table 1). Developers in our interviews included system
developers, system analysts and system architects. In practice, a single employee may have multiple
roles in development and therefore we decided to term these as “developers”. The interviews included
frequent elaboration and clarification of the meaning, and after all the interviews were audio recorded,
they were transcribed to text yielding over 500 pages of transcripts.

Org Offered products and
services

Size
(employees)

Interviewees Duration of the
Interviews

A Operative systems for an
industry

800 2 upper managers, 3
project managers, 2
developer; in total 7

9.5 hours

B Automation systems for
one industry sector

100 4 upper managers, 2
project managers, 1
developer; in total 6

5.5 hours

C Software development
services, subcontracting

200 2 upper managers, 1
project manager, 2
developers; in total 5

4.5 hours

Table 1: Summary of the participating companies and interviewees

The data was analyzed using the Atlas.TI (2007) software. The first phase of analysis, open coding
(Strauss and Corbin, 1990), was conducted by marking any text passage referring to customer. These
marked sections were conceptualized and recorded as codes by assigning a label that identified the
customer-supplier related issues. Next phase, axial coding (Strauss and Corbin, 1990), was to relate
the categories to their subcategories to form more precise and complete explanation of the categories.
The main purpose of axial coding is to restructure the categories that were found during open coding.
We started the axial coding phase by grouping similar codes into broader categories and, for example,
customer influence and customer participation were grouped under customer effects while insufficient
requirements and incomplete knowledge on customer business were grouped under insufficient domain
knowledge. At the same time we also learned about the causalities among the categories as, for
example, both insufficient knowledge on customer’s business and language barrier had caused
insufficient requirements as the supplier fails to understand the real customer needs in both the cases.
The final phase of integrating and refining the categories to form a theory is called selective coding
(Strauss and Corbin, 1990). The purpose of this phase is to design a theory on the basis of the
categories that were established during the axial coding. First, the theory is integrated by organizing
the categories around a central explanatory concept, and then refined by describing poorly defined
categories in more depth and excessively described categories are trimmed to form the actual theory;
overall Strauss and Corbin (1990) call this phase theory refining. In our study we had customer-
supplier issues as the central explanatory concept, and all the categories that were found in axial
coding were organized around this concept.

www.manaraa.com

3 RESULTS

The analysis of the data was initiated with the goal of identifying the central customer-supplier issues
in software development. As the analysis continued, the four key issues started to emerge from the
data, and the following detailed research questions were developed to focus the rest of the study:

• Does the supplier have sufficient domain knowledge to develop software?
• How are changes managed during the projects?
• What kind of knowledge transfer difficulties are there between customer and supplier?
• What kind of a relationship do customer and supplier share?

The analyzed data suggested that customer-supplier issues are caused by knowledge transfer problems
between the customer and supplier organizations, changes introduced by the customer, and customer
dominance over the supplier. Continued analysis of the data revealed five more detailed issues in the
customer-supplier interface. However, these issues are more detailed issues of the two earlier
identified categories – knowledge transfers difficulties and customer dominance. Thus, in the end of
the analysis we had the following three main issue categories with five more detailed issues:

• Knowledge transfer difficulties
o Insufficient domain knowledge
o Incompatible terminology
o Language barrier

• Change management during the project
• Customer dominance

o Customer dominance on process
o Business induced power asymmetry

The rest of this section describes each of the identified issue in detail, how they were observed in the
analyzed material, and how each issue has been identified and dealt with in related studies. The
analysis of the data was done in an inductive fashion, i.e. before in-depth study of the literature, but we
added literature references at appropriate places, because we wanted to bring more clarity to the issues
that we identified.

3.1 Knowledge transfer difficulties

The three issues in this category deal with knowledge. Knowledge transfer is described as an exchange
process of information and skills between entities in a systematic manner (Wanga et al., 2003).
Knowledge transfer is done between entities through any forms of communication (Hanssen and
Faegri, 2006). Communication plays a vital role in requirements gathering (Holtzblatt and Beyer,
1995). Too much communication will result in depravity of developer’s performance (Hanssen and
Faegri, 2006), but if there is not enough communication or the communication fails then developers
may develop wrong kind of software (Boehm, 2002b).

Knowledge transfer difficulties in the case companies were caused by insufficient domain knowledge,
incompatible terminology and language barrier. All three issues cause lack of information to the
supplier and may result in misunderstanding requirements and inability to deliver useful software to
the customer. The rest of this section describes each knowledge transfer difficulty individually with
the observations and consequences.

3.1.1 Insufficient domain knowledge

Insufficient domain knowledge refers to the situation where the customer’s application domain
knowledge is unobtainable to the supplier. The customer is either not able or willing to deliver
application domain knowledge to the suppliers. Rus and Lindvall (2002) define application domain

www.manaraa.com

knowledge as the knowledge about customer’s business process, business rules, activities, needs and
the customer’s business objectives for the software business. Tiwana (2004) illustrates how the
application domain knowledge forms the basis for requirements of a software project, and Alexander
and Judy (1988) conclude that lack of application domain knowledge can result in inelegant problem-
solving strategies. Finally, Curtis et al (1988) claim that software designers often lack knowledge
about customer’s work and therefore are unable to design useful tools for the customer.

The same issue of limited application domain knowledge was observed in many of our interviews. The
limitations in customer side to give further information about their business needs and goals were one
of the reasons for having deficient application domain knowledge.

We still understand very little about customers’ business in many cases. Reason being restrictions that
we sometimes have because of the nature of the customers’ business. They won't tell us what their
actual goals are.- Senior manager

Actually we do not know business needs which are known to our customer. Why these features are
needed in this project is unknown to us. What improves our knowledge is the customer’s involvement
into the initial preparation of the project, initial preparation of the requirements. If we know the
business needs of our customer we can better prepare the software. – Project manager

In this issue the application domain knowledge is unobtainable by the development team which
eventually results in customer dissatisfaction as the development team can not address the customer’s
real need. Even though limited access to domain knowledge as such is a very understandable
constraint and can be caused by, for example, confidentiality issues in business or the nature of
customer’s business, its negative effects on the software project are also undeniable.

According to the literature there are some useful tactics to combat the unobtainable business
application knowledge. Keil et al (1998) note that customer should be involved in the project and they
even suggest that the project should be led by the customer community. In addition, the customers
must be continually reminded of the important role that they play in defining the project’s
functionality (Holtzblatt and Beyer, 1995; Keil et al., 1998). Further it is shown that project success is
correlated with good requirements (Verner et al., 2004) and good requirements can be obtained only
from the customer defining them.

3.1.2 Incompatible terminology

Incompatible terminology is quite a common issue in knowledge transfer in software projects. Stiller
and Leblanc (2002) have defined incompatible vocabularies as incompatibility between the different
vocabularies of software developers and application domain experts, such as users and customers.
Since “terminology” is used more in the literature than “vocabularies” (Maidantchik et al., 2002;
Nuseibeh and Easterbrook, 2000) in this study the term incompatible terminology is used for this
issue.

According to Stiller and Leblanc (2002) incompatible terminology creates misunderstandings in the
requirements phase and ultimately causes requirements dissatisfaction. Similarly, Van Lamsweerde et
al (1998) state that one of the reasons for requirements conflict is the incompatible terminology.

Sometimes we have problems that we don’t really understand each other. As we are using different
terms, they [customer] don’t know the IT terms and sometimes we [supplier] do not understand the
business terms. They have very specific terms … and sometimes [the incompatible terminology
problem] will disappear when we work together for a long time but often we can still find some new
words and concepts. - System architect

We noticed that developers do not have the knowledge of the application domain terms and at the
same time the customers do not have all the needed technical knowledge due to their different
backgrounds. Incompatible terminology can cause requirements misunderstandings and lead to the
development of software that does not meet the customer’s expectations.

www.manaraa.com

Literature suggests a few solutions for the incompatible terminology issue. Sommerville and Sawyer
(1997) suggest that a supplier team should define a reusable set of terms that can be used in similar
projects. Maidantchik et al. (2002) noticed that presenting a terminology proposal that is already
accepted by other customers will have a better reception and thus also suggests that an organization
should have a predefined terminology proposal. Finally, Stiller and Leblanc (2002) suggests that
customers and suppliers with different backgrounds have different understanding of terms, and hence
much discussion must occur among the various groups involved in systems development to avoid
misunderstandings, errors, and implicit assumptions.

3.1.3 Language barrier

Language barrier refers to the issues that are caused by the limited knowledge in the used language.
This difficulty in knowledge transfer and communication in general can cause incomplete knowledge
about the requirements and may also lead to wrong requirements as the development team will not
understand them.

Chen and Lin (1998) claim that language barrier can be fatal in system analysis and design, especially
when developing application oriented products. Welch et al. (2001) state that language-related issues
can come up in document translation and the consequences are clearly seen in communication and
information flow. They further claim that due to language difficulties parts of vital information can be
deleted either deliberately or otherwise. Marschan et al (1997) have similar experiences of vital
information deletion and transfer of information as a consequence of language difficulties. Finally,
Feely and Harzing (2003) state that “It is worth noting that the language barrier triggers a whole range
of negative consequences. It breeds uncertainty and suspicion, accentuates group divides, undermines
trust, and leads to polarisation of perspectives, perceptions and cognitions.”

The knowledge of English within the customer organizations was reported to be very varied. In some
situations the customer was not able to clarify the development team’s questions of the requirements
because of the language barrier and, consequently, the development team was left without accurate
interpretation of the requirements. This was found a common problem in the development of complex
systems in a multi-national context.

We always have language problems because our people speak, write and read English more or less
well but sometimes we have problems from the customer side. The customer is the one who knows
everything about the business area and the product, but sometimes they do not speak English or speak
it very badly. This is a problem because it makes it hard to clarify the requirements. Sometimes we ask
customers about domain information or requirements but they don’t give us answers, and it is a
problem. – Systems developer

If we try to describe something in the project and then notice you miss information that you have, for
example, in Finnish. Then you try to translate that information to a European language, let’s say to
German. Or when you try to write in English you notice you do not know how to say that in English,
and you just kind of leave it out. - Project manager

From the quote we can see another problem of the language barrier – the loss of required information
in documents, for example when the documentation is in a foreign language. It was observed that
translation of the documents into a foreign language led to a deletion of a few lines. This happened
because the customer team was not able to get the correct words or a meaning for the lines that were in
their native language and hence deleted them. The ability to communicate effectively in transferring
knowledge is the key to team based success. The deletion of parts of vital information and inefficient
communication due to a lack of fluency in language leads to a lack of information resulting in
requirements misunderstanding.

A few ways to solve the language barrier issues have been suggested by the literature. For example,
Krishna et al (2004) suggest that language training should be given to both the supplier and customer
employees. Reel (1999) emphasizes also the importance of good communication that must be built in

www.manaraa.com

all the levels of cooperation between the supplier and customer organizations to avoid problems with
knowledge transfer. Further, Welch et al (2001) suggest that a common language could be adopted for
example, English can be one solution even though a third language can add difficulties too. Finally,
Feeling and Harzing (2003) state that a rational and obvious response to the language barrier is to
employ external resources such as translators and interpreters.

3.2 Change Management during the Project

Change management refers to the changes that are introduced during the project by the customers. The
requirements that are given in the beginning of the project are often subjects to change which causes a
problem as changes require extra resources and time which are seldom given by the customer.

Successful software has to conform to the customer requirements. These requirements are prone to
continuous change because of the processes, customers, laws and technology change (Brooks, 1987).
Kotonya and Sommerville (1997) stated that “It is often the case that more than 50% of a system’s
requirements will be modified before it is out into service”. Further Manhart and Schneider (2004)
claim that customer specific add-ons are always a source of hassle for the developers. Ramzan and
Ikram (2005) state that changes that are brought in requirements pose as a problem to developers and
project managers. Both Boehm and Ross (1989) and Powell (1996) report technical problems like
bugs and low software quality as consequences of such changes. Similar problems were observed also
in the present study.

The business needs of our American customers change so much during the projects that it’s a real
problem to handle all these changes. - Senior manager

Changes in our state law can affect our practices. Probably changes in the USA can affect our work
also since law changes in our customer countries cause changes inside the organization or in the
business of our customers. - Project manager

Not all customers are ready to expand budget or compromise the schedules when changes come. - Top
manager

But now here in this project in which we had at least two changes already and they have delayed the
project since we lack available resources, and even if we find them [the resources] the environment is
quite complex for a newcomer so it delays… - Project manager

From the above quote we can note that it is often difficult to implement changes because of deadlines,
resource problems, and complex development environments. The changes may ultimately result in
poor quality and delayed projects if the enforcement of these changes is unplanned and thus needs
extra time and resources that are not given by the customer.

Literature includes some suggestions on how to manage changes. Keil et al. (1998) emphasize that one
way to manage changes is to educate customer about their impact on financial matters and schedules,
and customer should also know what will not be included in the project. Kotonya and Sommerville
(1997) emphasize the importance of having a “change control board” to review all change requests as
they appear in a project. Sommerville (2001) stresses on having formal processes for managing
changes in an organization. Finally, Wiegers (2003) says that all organizations need to have a version
control scheme to identify and manage changes efficiently.

3.3 Customer dominance

The next two issues reflect the power relationship that exists between a supplier and a customer. The
first issue is the affect of the customer on the process selection and the second one is about business
induced power asymmetry between the supplier and the customer.

www.manaraa.com

The customer dominance has received much less attention in the previous research than the issues
discussed previously. However, the study of Axtell et al. (1997) revealed that the user-developer
relationship was one of the main problem areas in software development process. Heinbokel et al.
(1996) report that high user participation and user orientation correlates negatively with team
effectiveness and quality of team interaction. They further says that “our results imply that naïve
statements suggesting that user centeredness is all positive, need to be modified” (Heinbokel et al.,
1996). Finally, Heinbokel et al (1996) stated about the result of Selig (1986) claiming that there is
some evidence about certain forms of user participation may lead to project goals being missed more
often. Axtell et al. (1997) reports that there is need for further detailed case studies to validate and
examine the problems of user participation.

3.3.1 Customer dominance on process

In this study customer dominance on process is defined as a situation where the customer dominates
the software development process selection and creates a situation where the supplier is not able to
follow a process of its own. In other words, customer forces alignment of development processes on
the supplier team and the software development process gets disturbed. This issue has also been
identified by Heinbokel et al. (1996) who report that user participating in software development may
be limited due to their own behaviour: “one explanation may be that the process of software
development is disturbed by user participation.”

Sometimes the customers say that we have no time to follow the process, to make the paperwork so we
have to develop something very fast. And in this case we follow the customer. - Project manager

We have our own software development process and we are an ICT service company. But in many
cases we are following the procedures and processes that our customer uses. We tailor our project to
our customer needs and budget. Customer tells us the processes which are specific for them. - Senior
manager

Almost in all cases we follow the procedure that the customer has. – Upper manager

From the above quotes we can see that influence from the customer in process selection leads either to
a situation where the supplier is unable to follow their own software process or the process is dictated
by the customer. The customer has the total control on the project and the process of developing it.
Customer practices may delay schedules and since the supplier is forced to do what the customer
wants with methods controlled by the customer, the quality of the final product may suffer. A
customer may also delay the project with their way of working by not performing their work on time
and in schedule. This is quite evident in the following quote:

The customer wanted to work their own way - even though they initially committed to this project and
promised they would work our way. First we were supposed to document the business processes and
use cases, and move from there little by little to the design of user interfaces and functionality. But
only after we had the first versions of the user interfaces done, the customer started doing the
specification work - they wanted this part to be moved over there, and that part should work like this -
and all this delayed the specification project. So they really had not understood what it meant to
operate the way we had suggested. - Systems analyst

The customer does not necessarily realize the importance of working in similar terms with the
supplier. The project tends to get delayed if responsibilities are not fulfilled within the schedule.
Changes are sometimes introduced by the customer in a phase which has already been completed. By
dictating the development process the control lies with the customer and this is may lead to delayed
and poor quality projects, because the supplier has to wait for the customer feedback on every step and
work with methods and practices that it may not be accustomed to.

www.manaraa.com

3.3.2 Business induced power asymmetry

The other form of customer dominance is business induced power asymmetry with which we refer to
the supplier’s fear of losing business. We found in many occasions that a project team accepted
customer demands as such because they were afraid of losing the customer. Heinbokel et al. (1996)
claim that with higher customer orientation project changes are introduced during the later stages of
the development process and thus the development process gets disturbed. They further claim that
customer orientation can affect the supplier performance: “customer orientation may lead to high
levels of aspiration and, therefore, to a higher degree of stressors and a lower degree of team
effectiveness” (Heinbokel et al., 1996). It was also observed in our case companies that accepting
customer demands can cause delays and low quality outcomes.

This sale case was active in the fall of 2004, and we did not have too much work at that time... Such a
big and attempting project [from a customer] we always wanted to have, and then we got such an
opportunity. You would have done anything to get the deal. Still, it should not have affected the work
effort estimation and function point calculations - and I trust it did not - but I assume the price was
compromised due to the fact that the customer wanted the system to be ready by the end of the year
2006. Our suggestion was half a year later, but when the customer pressured to get it ready by the end
of the year, it was assumed that we could probably do it. – Senior project manager

A customer watches the project very closely and coming to look what we are doing he might say a
small thing like “Change this” and probably we do it. - Systems analyst

It is very important for us to maintain the discipline in the company.. .that the customer is the God and
the person who you work for and ... that you have to solve your problems yourselves. –Upper manager

We can say that the relationship between the supplier and the customer is asymmetrical, because the
customer has usually a higher power over development projects than the supplier. The supplier has to
adjust to the demands of the customer that may result to change requests at the final stages of the
development. We observed that a supplier cannot often say no to the customer change requests that are
introduced in the projects. This leads to changes in the software requirements at a very late stage of the
project and may result to delayed schedules or poor quality software projects. Unfortunately, the
literature does not yet provide suggestions on how to address this problem.

4 CONCLUSION

The importance of empirical studies is to authenticate the relative value of results within a field of
study which will contribute to the advancement of that field (Seaman, 1999; Wasson, 2004). In this
study the data collected from the companies helped us to understand how customer issues often arise
in the requirements engineering and communication domains. Based on a set of in-depth interviews
this study describes three customer-supplier related issues in software development.

As shown in the results section, our results regarding the understanding of requirements engineering
and communication between the customer and developer have been similar to existing studies
(Boehm, 2002a; Hanssen and Faegri, 2006; Johnson, 1999; Keil and Carmel, 1995; Keil et al., 1998).
This study has, however, brought a unified view to the customer-supplier related issues and added
customer dominance to the list of issues.

We found that unobtainable knowledge of customer’s business and knowledge transfer difficulties
lead to insufficient requirements and lack information on customer’s business needs. Changes
introduced during the project results in poor quality and delays in the project. Customer dominance
also introduces changes as the development team often cannot refuse the customer’s requests. By
influencing the way software is developed, the customer is dominating and dictating the development
processes and it is questionable how beneficial this is to the customer. Table 2 shows the summary of
the observed issues with their effects.

www.manaraa.com

This study explained how customer-related issues are frequently happening in software development
practice. The study has its limitations. All the studied case organizations were developing tailored
software and therefore similar kind of observations can be expected primarily in tailored development.
Product-oriented development may have its specific issues, but it is possible that many of the issues
mentioned here are common. Another major limitation is that this study has the supplier viewpoint
only. Though we tried to get the customer viewpoint it was not possible due to the restrictions that we
had from the supplier organizations who were the participants in the project.

Observed issue Explanation Observed effect
Insufficient
domain
knowledge

Customer restrictions to give
application domain knowledge to the
development team.

Lack of business application
domain knowledge leads to
requirements misunderstanding and
inability to address the customer
needs.

Incompatible
terminology

Terms used between developer and
customer are often difficult to
understand. Customer does not
understand IT terms and developers do
not understand application domain
terms.

Terms are understood differently
which leads to requirements
misunderstanding and inability to
develop useful software for the
customer.

Knowledge
transfer
difficulties

Language
barrier

Difficulty in speaking with each other
and translating documents because of
not having fluency in spoken and
written language.

Development team lacks
information needed from the
customer which leads to
requirements misunderstanding.

Changes brought during the
projects

Customer introduces changes in the
project as laws, technology and
business needs change.

Poor quality and delayed projects.

Customer
dominance
on process

Customer is dictating the software
development process. Customer does
not work along with the development
team and thus the schedules of
customer and development team differ.

Project is developed haphazardly as
it lacks the development team’s
control on the software
development process leading to
poor quality software and delays in
project schedule.

Customer
dominance

Business
induced
power
asymmetry

Development team does not refuse
customer requests due to the fear of
loosing business.

Constantly responding to customer
demands leads to poor quality
software and schedule delays.

Table 2: Observed issues and their effects.

The practical implication of this research is significant for project managers of tailored software
projects. The results enable project managers to forecast the customer-related issues in projects. By
knowing such issues, one can be better prepared for their appearance and create strategies for
overcoming them. For the researchers our study provides further evidence of the importance of
customer-supplier relationship. In particular our data provides evidence of the negative effect a
customer can have on a software project through dominance. These indications are still initial, and
thus further work is needed. Future study can concentrate on comparing these issues in other kinds of
software organizations. To saturate fully these findings, one can include observations for example
from a subcontractor, a software product development company, and an end-user software developer
organization.

www.manaraa.com

References
(2007) Atlas.TI Scientific Software, Berlin.
Alexander, P. A. and Judy, J. E. (1988) The Interaction of Domain-Specific and Strategic Knowledge

in Academic Performance Review of Educational Research, 58 (4), pp. 375-404.
Axtell, C. M., Waterson, P. E. and Clegg, C. W. (1997) Problems integrating user participation into

software development, International Journal of Human-Computer Studies, 47 (2), pp. 323-345.
Benbasat, I., Goldstein, D. K. and Mead, M. (1987) The case study research strategy in studies of

information systems, MIS Quarterly, 11 (3), pp. 369-386.
Bern, A., Pasi, A. S. J., Nikula, U. and Smolander, K. (2007) Contextual Factors Affecting the

Software Development Process – An Initial View, 2nd AIS SIGSAND European Symposium on
Systems Analysis and Design, Gdansk, Poland, June 5.

Boehm, B. (2002a) Get ready for agile methods, with care, Computer, 35 (1), pp. 64-69.
Boehm, B. (2002b) Software engineering is a value-based contact sport, IEEE Software, 19 (5), pp.

95-96.
Boehm, B. W. and Ross, R. (1989) Theory-W software project management principles and examples,

IEEE Transactions on Software Engineering, 15 (7), pp. 902-916.
Brooks, F. P., Jr. (1987) No Silver Bullet Essence and Accidents of Software Engineering, Computer,

20 (4), pp. 10-19.
Chen, Q. and Lin, B. (1998) Global outsourcing and its managerial implications, Human Systems

Management, 17 (2), pp. 109-114.
Curtis, B., Krasner, H. and Iscoe, N. (1988) A field study of the software design process for large

systems, Communication of the ACM, 31 (11), pp. 1268-1287.
Feely, A. J. and Harzing, A.-W. (2003) Language Management in Multinational Companies, Cross

Cultural Management: An International Journal 10 (2), pp. 37-52.
Glaser, B. G. and Strauss, A. L. (1967) The discovery of grounded theory: strategies for qualitative

research Aldine De Gruyter, Chicago.
Hansen, B. H. and Kautz, K. (2005) Grounded Theory Applied - Studying Information Systems

Development Methodologies in Practice, Proceedings of the 38th Annual Hawaii International
Conference on System Sciences HICSS '05.

Hanssen, G. K. and Faegri, T. E. (2006) Agile Customer Engagement: a Longitudinal Qualitative Case
Study, Proceedings of the 2006 ACM/IEEE international symposium on International symposium
on empirical software engineering ISESE'06, ACM Press, Rio de Janeiro, Brazil, pp. 164-173.

Heinbokel, T., Sonnentag, S., Frese, M., Stolte, W. and Brodbeck, F. C. (1996) Don't underestimate
the problems of user centredness in software development projects - there are many!, Behaviour
and Information Technology, 15 (4), pp. 226-236.

Holtzblatt, K. and Beyer, H. R. (1995) Requirements Engineering: the human factor, Communication
of the ACM, 38 (5), pp. 31-32.

Johnson, J. (1999) Turning Chaos into Success, Software Magazine.
Jorgensen, M. and Molokken-Ostvold, K. (2006) How large are software cost overruns? A review of

the 1994 CHAOS report, Information and Software Technology, 48 (4), pp. 297-301.
Keil, M. and Carmel, E. (1995) Customer-Developer Links in Software Development, Communication

of the ACM, 38 (5), pp. 33-44.
Keil, M., Cule, P. E., Lyytinen, K. and Schmidt, R. C. (1998) A Framework Identifying Software

Project Risks, Communications of the ACM, 41 (11), pp. 76-83.
Kirsch, L. J. and Haney, M. H. (2006) Requirements determination for common systems: turning a

global vision into a local reality, The Journal of Strategic Information Systems, 15 (2), pp. 79-104.
Kotonya, G. and Sommerville, I. (1997) Requirements Engineering: Processes and Techniques, John

Willey and Sons Ltd.
Krishna, S., Sahay, S. and Walsham, G. (2004) Managing cross-cultural issues in global software

outsourcing, Communication of the ACM, 47 (4), pp. 62-66.

www.manaraa.com

Maidantchik, C., Montoni, M. and Santos, G. (2002) Learning organizational knowledge: an
evolutionary proposal for requirements engineering, Proceedings of the 14th international
conference on Software engineering and knowledge engineering, ACM, Ischia, Italy, pp. 151-157.

Manhart, P. and Schneider, K. (2004) Breaking the ice for agile development of embedded software:
an industry experience report, Proceedings of 26th International Conference on Software
Engineering ICSE 2004., pp. 378-386.

Marschan, R., Welch, D. and Welch, L. (1997) Language: The forgotten factor in multinational
management, European Management Journal, 15 (5), pp. 591-598.

Nuseibeh, B. and Easterbrook, S. (2000) Requirements engineering: a roadmap, Proceedings of the
Conference on The Future of Software Engineering, ACM, Limerick, Ireland, pp. 35-46.

Powell, A. L. (1996) A literature review on the quantification of software change, Department of
Computer Science, University of York, Heslington.

Ramzan, S. and Ikram, N. (2005) Making Decision in Requirement Change Management, First
International Conference on Information and Communication Technologies ICICT 2005, pp. 309-
312.

Reel, J. S. (1999) Critical success factors in software projects, IEEE Software, 16 (3), pp. 18-23.
Rus, I. and Lindvall, M. (2002) Knowledge management in software engineering, IEEE Software, 19

(3), pp. 26-38.
Seaman, C. B. (1999) Qualitative methods in empirical studies of software engineering, IEEE

Transactions on Software Engineering, 25 (4), pp. 557-572.
Selig, J. (1986) EDV-Management. Eine empirische untersuchung der Entwicklung von

Anwendungssystemen in deutschen unternehmen, Springer, Berlin.
Sommerville, I. (2001) Software Engineering, Addison-Wesley an imprint of Pearson Education.
Sommerville, I. and Sawyer, P. (1997) Viewpoints: principles, problems and a practical approach to

requirements engineering, Annals of Software Engineering, 3, pp. 101-130.
Stiller, E. and Leblanc, C. (2002) Project-based software engineering, Addison-Wesley.
Strauss, A. L. and Corbin, J. (1990) Basics of Qualitative Research: Grounded Theory Procedures and

Applications, Sage Publications, Newbury Park, CA.
Tiwana, A. (2004) An empirical study of the effect of knowledge integration on software development

performance, Information and Software Technology, 46 (13), pp. 899-906.
Wallace, L. and Keil, M. (2004) Software Project Risks and their Effect on Outcomes,

Communications of the ACM, 47 (4), pp. 68-73.
Van Lamsweerde, A., Darimont, R. and Letier, E. (1998) Managing conflicts in goal-driven

requirements engineering, IEEE Transactions on Software Engineering, 24 (11), pp. 908-926.
Wanga, P., Tongb, T. W. and Koh, C. P. (2003) An integrated model of knowledge transfer from

MNC parent to China subsidiary, Journal of World Business, 39, 168–182.
Wasson, K. S. (2004) Requirements metrics: Scaling up, Proceedings of 2nd International Workshop

on Comparative Evaluation in Requirements Engineering (CERE '04), Kyoto, Japan, pp. 51-55.
Welch, D. E., Welch, L. S. and Marschan-Piekkari, R. (2001) The Persistent Impact of Language on

Global Operations, Prometheus, 19 (3), pp. 193-209.
Verner, J., Cox, K., Bleistein, S. and Cerpa, N. (2004) Requirements Engineering and Software Project

Success: An Industrial Survey in Australia and the U.S., Australia Journal of Information Systems,
13 (1), pp. 225-238.

Wiegers, K. E. (2003) Software Requirements, Microsoft Press.
Yin, R. K. (2003) Case study research: design and methods, Sage Publications.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	2008

	Customer-Supplier Issues in Software Development
	Satya Pasi
	Kari Smolander
	Uolevi Nikula
	Recommended Citation

	Abstract
	Abstract

	1 INTRODUCTION
	2 RESEARCH PROCESS AND METHODOLOGY
	3 RESULTS
	3.1 Knowledge transfer difficulties
	3.1.1 Insufficient domain knowledge
	3.1.2 Incompatible terminology
	3.1.3 Language barrier

	3.2 Change Management during the Project
	3.3 Customer dominance
	3.3.1 Customer dominance on process
	3.3.2 Business induced power asymmetry

	4 CONCLUSION
	References

